Parallel Tracking and Verifying: A Framework for Real-Time and High Accuracy Visual Tracking
Heng Fan and Haibin Ling
Project & code: http://www.dabi.temple.edu/~hbling/code/PTAV/ptav.htm

ICC

Goal: to locate an arbitrary target in a video with its
initial position.

» Model-free: agnostic to the object’s class

» Single-object tracking

Main challenges:

» Appearance variations: occlusion, scale changes, rotation,
deformation, illumination variations, ...

» Real-time requirement

Background

To deal with appearance variations:
» Deep learning based solution:

*,

“* Pros: robust to appearance variations

*,

« Cons: high computation burden

Representatives: SANet (CVPRW’17), MDNet (CVPR’16), HCF
(ICCV’15), SINT (CVPR’16), C-COT (ECCV’16), ...

To meet real-time requirement:
» Using simple hand-crafted features
“» Pros: efficient computation, easily running real-time
<+ Cons: sensitive to appearance variations

Representatives: KCF (TPAMI'15), MOSSE (CVPR’10),
fDSST(TPAMI’17), Staple (CVPR’16), ...

Summary
Speed-accuracy for each tracker on 0TB2013
@ ! & sane
T 0952 i 1 MDNet
g | * PTAV
2 osf 1 1 + Her
g + | ¥ O srocF
S | § staple
g 085 “h 4 1 | 7 meem
< v SINT
2 08p i . o 4 [< et
o , real-time # | A rosst
075 . 1 . N) .
0 5 10 15 20 25 30 35 40 45 50 55

Speed (FPS)

» Real-time & high quality trackers remain scarce

2.380 2.261 2.226 2.396

1.910 0.227 2.369

Frame index 10 20 30 40 50

60 70 80 90 200 210

Figure: Verifying tracking results on a typical sequence. In most time, tracker works well.

» In most time, the target moves smoothly and its appearance changes slowly, and simple but efficient

trackers work fine (see the above figure).

» Multi-thread computing has benefited computer vision systems, with notably in visual SLAM
(simultaneous localization and mapping). By splitting tracking and mapping into two parallel threads,
PTAV (parallel tracking and mapping) provides one of the most popular SLAM frameworks.

» Analogous to PTAM in which mapping is not required for every frame; nor does verifying in our task

gles rep racking results
Red rectangle (e.g., frame #380) represents detection result

¥ i Tracker T° Le‘
£ ']

A

¥

Frame 1

» Main idea

Verifier V

«»» Decompose visual tracking into two tasks, i.e., fast tracking and reliable verifying, processed by two
parallel threads with necessary interactions (see above figure)

» Components in PTAV
< A (fast) tracker T <>
O Perform efficiently (real-time)

Send verification request to V
Allowed to make mistakes

A (reliable) verifier V

Q Perform relatively slowly but accurately
Q Receive request from T
Q Return feedback to T, and correct it (if necessary)

a
a
O Response to feedback from 'V by adjusting tracking model
O Remain all intermediate states for fast rolling back

PTAV: detailed workflow

Algorithm 1: Parallel Tracking and Verifying (PTAV)

Algorithm 2: Tracking Thread T

1 Initialize the tracking thread for tracker 77
2 Initialize the verifying thread for verifier V;
3 Run 7 (Alg. 2) and V (Alg. 3) till the end of tracking;

while Current frame is valid do

Algorithm 3: Verifying Thread V

1 while not ended do

2 if received request from T then

3 Verifying the tracking result;

4 if verification failed then

5 ‘ Provide correction information;
6 end

7 Send verification result s to T;

8 end

9 end

1

2 if received a message s from V then

3 if verification passed then

4 | Update tracking model (optional);
5 else

6 Correct tracking;

7 Trace back and reset current frame;
8 Resume tracking;

9 end

10 else

1 Tracking on the current frame;

12 if time for verification then

13 | Send the current result to V to verify;
14 end

15 end

16 Current frame <« next frame;

17 end

» Implementation of tracker T’
«» Correlation filter based tracker: fDSST (Danelljan et al. PMAI’17)

RS

%+ Store all intermediate status

Implementation of verifier V
% Siamese networks: SINT (CVPR’16)
» How to correct T’
<V performs sliding window detection

Experimental results

‘Success plots of OPE on UAV20L

lots of OPE on TC128

on Ovete sl
Speed comparisons on OTB2013 and OTB2015
Deep trackers Correlation-filters based trackers Representative trackers
PTAV | HCF SINT DLT SiamFC|SRDCF Staple LCT fDSST KCF |MEEM TGPR Struck
OTB2013 | speed (fps) 7 11 3 9 46 4 45 27 54 245 21 1 10
OTB201S | speed (fps) 25 10 2 8 43 4 43 25 51 243 21 1 10

Ablation study of PTAV

» Different verification V=5 ¥=10 V=15
. DPR (%) 89.7 89.4 879
interval V
Speed (fps) 23 27 29
Threads ~ OTB2013 OTB2015 TC128 UAV20L
» Two threads V.S. One 16 14 11 15
one Two 27 25 21 25
PTAV with fDSST PTAV with KCF
DP (%) 894 80.4
» Different tracker OTB2013 | OS (%) 827 66.3
T:fDSSTV.S. S e =
(%) : 3.
KCF OTB2015 | OS (%) 776 57.9
Speed (fps) 25 21

Conclusion

» Decompose tracking into two separate tasks (i.e., fast tracking
and slow verifying)

» The (fast) tracking (slow) verifying work asynchronously

» PTAV enjoys both high efficiency provided by T and the strong
discriminative power provided by V

» PTAVis a very flexible framework with great rooms for
improvement and generalization.

[1] M. Danelljan, G. Hager, F. Khan, and M. Felsberg, Discriminative
scale space tracking, TPAMI, 2017.

[2] R. Tao, E. Gavves, A. Smeulders, Siamese instance search for
tracking, in CVPR, 2016.

